7,947 research outputs found

    LP-decodable multipermutation codes

    Full text link
    In this paper, we introduce a new way of constructing and decoding multipermutation codes. Multipermutations are permutations of a multiset that may consist of duplicate entries. We first introduce a new class of matrices called multipermutation matrices. We characterize the convex hull of multipermutation matrices. Based on this characterization, we propose a new class of codes that we term LP-decodable multipermutation codes. Then, we derive two LP decoding algorithms. We first formulate an LP decoding problem for memoryless channels. We then derive an LP algorithm that minimizes the Chebyshev distance. Finally, we show a numerical example of our algorithm.Comment: This work was supported by NSF and NSERC. To appear at the 2014 Allerton Conferenc

    Efficient learning of neighbor representations for boundary trees and forests

    Full text link
    We introduce a semiparametric approach to neighbor-based classification. We build off the recently proposed Boundary Trees algorithm by Mathy et al.(2015) which enables fast neighbor-based classification, regression and retrieval in large datasets. While boundary trees use an Euclidean measure of similarity, the Differentiable Boundary Tree algorithm by Zoran et al.(2017) was introduced to learn low-dimensional representations of complex input data, on which semantic similarity can be calculated to train boundary trees. As is pointed out by its authors, the differentiable boundary tree approach contains a few limitations that prevents it from scaling to large datasets. In this paper, we introduce Differentiable Boundary Sets, an algorithm that overcomes the computational issues of the differentiable boundary tree scheme and also improves its classification accuracy and data representability. Our algorithm is efficiently implementable with existing tools and offers a significant reduction in training time. We test and compare the algorithms on the well known MNIST handwritten digits dataset and the newer Fashion-MNIST dataset by Xiao et al.(2017).Comment: 9 pages, 2 figure

    Hardware Based Projection onto The Parity Polytope and Probability Simplex

    Full text link
    This paper is concerned with the adaptation to hardware of methods for Euclidean norm projections onto the parity polytope and probability simplex. We first refine recent efforts to develop efficient methods of projection onto the parity polytope. Our resulting algorithm can be configured to have either average computational complexity O(d)\mathcal{O}\left(d\right) or worst case complexity O(dlogd)\mathcal{O}\left(d\log{d}\right) on a serial processor where dd is the dimension of projection space. We show how to adapt our projection routine to hardware. Our projection method uses a sub-routine that involves another Euclidean projection; onto the probability simplex. We therefore explain how to adapt to hardware a well know simplex projection algorithm. The hardware implementations of both projection algorithms achieve area scalings of O(d(logd)2)\mathcal{O}(d\left(\log{d}\right)^2) at a delay of O((logd)2)\mathcal{O}(\left(\log{d}\right)^2). Finally, we present numerical results in which we evaluate the fixed-point accuracy and resource scaling of these algorithms when targeting a modern FPGA

    Pathological classification of equine recurrent laryngeal neuropathy

    Get PDF
    Recurrent Laryngeal Neuropathy (RLN) is a highly prevalent and predominantly left‐sided, degenerative disorder of the recurrent laryngeal nerves (RLn) of tall horses, that causes inspiratory stridor at exercise because of intrinsic laryngeal muscle paresis. The associated laryngeal dysfunction and exercise intolerance in athletic horses commonly leads to surgical intervention, retirement or euthanasia with associated financial and welfare implications. Despite speculation, there is a lack of consensus and conflicting evidence supporting the primary classification of RLN, as either a distal (“dying back”) axonopathy or as a primary myelinopathy and as either a (bilateral) mononeuropathy or a polyneuropathy; this uncertainty hinders etiological and pathophysiological research. In this review, we discuss the neuropathological changes and electrophysiological deficits reported in the RLn of affected horses, and the evidence for correct classification of the disorder. In so doing, we summarize and reveal the limitations of much historical research on RLN and propose future directions that might best help identify the etiology and pathophysiology of this enigmatic disorder

    The AWGN Red Alert Problem

    Full text link
    Consider the following unequal error protection scenario. One special message, dubbed the "red alert" message, is required to have an extremely small probability of missed detection. The remainder of the messages must keep their average probability of error and probability of false alarm below a certain threshold. The goal then is to design a codebook that maximizes the error exponent of the red alert message while ensuring that the average probability of error and probability of false alarm go to zero as the blocklength goes to infinity. This red alert exponent has previously been characterized for discrete memoryless channels. This paper completely characterizes the optimal red alert exponent for additive white Gaussian noise channels with block power constraints.Comment: 13 pages, 10 figures, To appear in IEEE Transactions on Information Theor

    Hierarchical and High-Girth QC LDPC Codes

    Full text link
    We present a general approach to designing capacity-approaching high-girth low-density parity-check (LDPC) codes that are friendly to hardware implementation. Our methodology starts by defining a new class of "hierarchical" quasi-cyclic (HQC) LDPC codes that generalizes the structure of quasi-cyclic (QC) LDPC codes. Whereas the parity check matrices of QC LDPC codes are composed of circulant sub-matrices, those of HQC LDPC codes are composed of a hierarchy of circulant sub-matrices that are in turn constructed from circulant sub-matrices, and so on, through some number of levels. We show how to map any class of codes defined using a protograph into a family of HQC LDPC codes. Next, we present a girth-maximizing algorithm that optimizes the degrees of freedom within the family of codes to yield a high-girth HQC LDPC code. Finally, we discuss how certain characteristics of a code protograph will lead to inevitable short cycles, and show that these short cycles can be eliminated using a "squashing" procedure that results in a high-girth QC LDPC code, although not a hierarchical one. We illustrate our approach with designed examples of girth-10 QC LDPC codes obtained from protographs of one-sided spatially-coupled codes.Comment: Submitted to IEEE Transactions on Information THeor

    Queuing Theoretic Analysis of Power-performance Tradeoff in Power-efficient Computing

    Full text link
    In this paper we study the power-performance relationship of power-efficient computing from a queuing theoretic perspective. We investigate the interplay of several system operations including processing speed, system on/off decisions, and server farm size. We identify that there are oftentimes "sweet spots" in power-efficient operations: there exist optimal combinations of processing speed and system settings that maximize power efficiency. For the single server case, a widely deployed threshold mechanism is studied. We show that there exist optimal processing speed and threshold value pairs that minimize the power consumption. This holds for the threshold mechanism with job batching. For the multi-server case, it is shown that there exist best processing speed and server farm size combinations.Comment: Paper published in CISS 201
    corecore